Abstract
This paper presents predictive energy management of hybrid electric vehicles (HEVs) via computationally efficient multi-layer control. First, we formulate an optimization problem by considering driveability and a penalty for using service brakes in the objective function to optimize gear, engine on/off, engine clutch state, and power-split decisions subject to constraints on the battery state of charge (SOC) and charge sustenance. Then, we split it into two control layers, including a supervisory control in a higher layer and a local power-split control in a lower layer. In the supervisory layer, a gear and powertrain mode manager (PM) is designed, and optimal gear, engine on/off and clutch states are obtained by using a combination of dynamic programming (DP) and Pontryagin's minimum principle (PMP). Moreover, a real-time iteration Secant method is proposed to calculate optimal battery costate such that the constraint on charge sustenance is satisfied. In the local controller layer, a linear quadratic tracking method (LQT) is used to optimally split power between the engine and the electric machine and keep battery SOC within its bounds.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have