Abstract

The fourth generation of mobile wireless networks (4G) is expected to be the most promising architecture for QoS provision due to its scalability, convenience for mobility support and capability of interworking heterogeneous radio access networks, which ensure both session continuity and QoS support. One major design issue of the 4G is the support of optimized handoff functionalities. More specifically, total disruption during a handoff should be minimized and its complexity hidden to end users. In this regard, the authors focus on developing new dynamic predictive resource reservation schemes in 4G for both uplink and downlink to maximize handoff success probability. The paper illustrates how to reserve radio resources according to future mobile terminal location expressed in a probabilistic way, to load conditions or target Base Station/Access point BS/AP and to the specificity of the data structure of each access network. Different resource reservation algorithms are devised. The objective is to efficiently utilize wireless radio resources, enhance the handoff performances and improve system performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call