Abstract

In this paper, a predictive direct power control (DPC) method without sector information and voltage vector selection is proposed for three-phase grid-connected converters. Different from conventional predictive direct power controllers, the proposed strategy always adopts fixed voltage vectors, instead of selecting voltage vectors according to the angular information of the grid-voltage vector or the virtual-flux vector. The converter switching time is obtained by minimizing the squared errors of the instantaneous active and reactive power. Switch duty cycles are then calculated and equivalently reconstructed. The proposed strategy not only presents rapid dynamic response due to the use of the predictive controller, but also possesses excellent steady-state performance as a result of duty cycle reconstruction. The main advantage of the proposed control scheme, compared with the classical DPC strategies, is that it is unnecessary to use sector information of the grid-voltage vector, and selection of active voltage vectors is also not required here. Therefore, incorrect selection of voltage vectors and the resulting performance deterioration are surely avoided, without the need of any additional compensation measures. An in-depth comparison and experimental assessment are given to validate the effectiveness of the proposed strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call