Abstract

The need to reduce greenhouse gas emissions is leading to an increase in the use of renewable energy sources. Due to the aleatory nature of these sources, to prevent grid imbalances, smart management of the entire system is required. Industrial refrigeration systems represent a source of flexibility in this context: being large electricity consumers, they can allow large-load shifting by varying separator levels or storing surplus energy in the products and thus balancing renewable electricity production. The work aims to model and control an industrial refrigeration system used for freezing food by applying the Model Predictive Control technique. The controller was developed in Matlab® and implemented in a Model-in-the-Loop environment. Two control objectives are proposed: the first aims to minimize total energy consumption, while the second also focuses on utilizing the maximum amount of renewable energy. The results show that the innovative controller allows energy savings and better exploitation of the available renewable electricity, with a 4.5% increase in its use, compared to traditional control methods. Since the proposed software solution is rapidly applicable without the need to modify the plant with additional hardware, its uptake can contribute to grid stability and renewable energy exploitation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call