Abstract

The main objective of this study is to develop an offline tuning of the operating input parameters for a sludge drying operation, by using multiobjective optimization techniques combined with a predictive control method. The manipulated variables concerned are the temperature and the relative humidity of the drying air (Tair, RHair). The optimal time for the reversal operation of the product is also investigated. The optimization procedure is coupled to a one-dimensional numerical model that allows the simulation of moisture content and temperature field evolutions in the product during the drying step. A genetic algorithm is used to identify the two manipulated variables, at each step time, by minimizing simultaneously three objective functions over a finite horizon. These objective functions are linked to penalties concerning the heating and dehumidifying of the outside air used for the drying stage and to a global moisture content gap relative to a drying target. First, the heat and mass transfer model is validated for the drying step of a plate sample of sludge, with a reversal operation. Afterwards, the optimization procedure is carried out, and the results are discussed in terms of an energetic analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.