Abstract

This study examines the techno-economic and life cycle analysis of bio-based isopropanol (IPA) production from sugar beet, utilizing a Geographical Information System (GIS)-enabled framework. By focusing on the innovative IPA production technology, the research demonstrates the economic and environmental feasibility of converting first-generation biomass into sustainable chemicals through the optimization of the Sugar Beet-to-Isopropanol supply chain. Findings highlight a cost-optimal production capacity of 55,800 mt/year with significant potential for reducing emissions and operational costs. The production cost of bio-IPA is potentially 70 % less than the fossil-derived IPA price. Additionally, the potential profits from bio-based IPA are estimated to be nearly double the market price of its primary raw material, sugar, demonstrating the economic feasibility of converting the first-generation biomass for sustainable IPA production. The study also explores the impact of facility clustering on transportation emissions and costs, revealing strategic approaches to expanding plant capacities in response to increasing demand. This research provides insights for designing sustainable industrial practices using first-generation biomass in the chemical industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.