Abstract

In this paper, a model predictive control (MPC) scheme for a class of parabolic partial differential equation (PDE) systems with unknown nonlinearities, arising in the context of transport-reaction processes, is proposed. A spatial operator of a parabolic PDE system is characterized by a spectrum that can be partitioned into a finite slow and an infinite fast complement. In this view, first, Galerkin method is used to derive a set of finite dimensional slow ordinary differential equation (ODE) system that captures the dominant dynamics of the initial PDE system. Then, a Multilayer Neural Network (MNN) is employed to parameterize the unknown nonlinearities in the resulting finite dimensional ODE model. Finally, a Galerkin/neural-network-based ODE model is used to predict future states in the MPC algorithm. The proposed controller is applied to stabilize an unstable steady-state of the temperature profile of a catalytic rod subject to input and state constraints.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.