Abstract

SummaryIn this paper, a design problem of low dimensional disturbance observer‐based control (DOBC) is considered for a class of nonlinear parabolic partial differential equation (PDE) systems with the spatio‐temporal disturbance modeled by an infinite dimensional exosystem of parabolic PDE. Motivated by the fact that the dominant structure of the parabolic PDE is usually characterized by a finite number of degrees of freedom, the modal decomposition method is initially applied to both the PDE system and the PDE exosystem to derive a low dimensional slow system and a low dimensional slow exosystem, which accurately capture the dominant dynamics of the PDE system and the PDE exosystem, respectively. Then, the definition of input‐to‐state stability for the PDE system with the spatio‐temporal disturbance is given to formulate the design objective. Subsequently, based on the derived slow system and slow exosystem, a low dimensional disturbance observer (DO) is constructed to estimate the state of the slow exosystem, and then a low dimensional DOBC is given to compensate the effect of the slow exosystem in order to reject approximately the spatio‐temporal disturbance. Then, a design method of low dimensional DOBC is developed in terms of linear matrix inequality to guarantee that not only the closed‐loop slow system is exponentially stable in the presence of the slow exosystem but also the closed‐loop PDE system is input‐to‐state stable in the presence of the spatio‐temporal disturbance. Finally, simulation results on the control of temperature profile for catalytic rod demonstrate the effectiveness of the proposed method. Copyright © 2015 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call