Abstract
The standalone microgrids with renewable energy resources (RERs) such as a photovoltaic (PV) system and fast changing loads face major challenges in terms of reliability and power management due to a lack of inherent inertial support from RERs and their intermittent nature. Thus, energy storage technologies such as battery energy storage (BES) are typically used to mitigate the power fluctuations and maintain a power balance in the system. This paper presents a model predictive control (MPC) based power management strategy (PMS) for such standalone PV/battery systems. The proposed method is equipped with an autoregressive integrated moving average (ARIMA) prediction method to forecast the load and environmental parameters. The proposed controller has the capabilities of (1) effective power management, (2) minimization of transients during disturbances, and (3) automatic switching of the operation of the PV between the maximum power point tracking (MPPT) mode and power-curtailed mode that prevents the overcharging of the battery and at the same time maximize the PV utilization. The effectiveness of the proposed method has been verified through a comprehensive simulation-based analysis.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have