Abstract

Organ printing, a layer-by-layer bioprinting approach, has emerged as a promising solution to providing human organs for transplantation. While inkjet-based vertical printing has found much success in cellular tube printing, horizontal printing should also be studied to fabricate complex biological constructs such as vascular trees. The concavity deformation of printed constructs during conventional horizontal printing is reported and analyzed. To mitigate the process-induced deformation, horizontal printing with predictive compensation is proposed to print tubular constructs by adopting a non-circular printing trajectory with deformation allowance built in. The cross section of fabricated constructs can be nearly circular after predictive compensation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call