Abstract
Differentiated thyroid cancer (DTC), comprising papillary and follicular thyroid cancers, is the most prevalent type of thyroid malignancy. Accurate prediction of DTC is crucial for improving patient outcomes. Machine learning (ML) offers a promising approach to analyze risk factors and predict cancer recurrence. In this study, we aimed to develop predictive models to identify patients at an elevated risk of DTC recurrence based on 16 risk factors. We developed six ML models and applied them to a DTC dataset. We evaluated the ML models using Synthetic Minority Over-Sampling Technique (SMOTE) and with hyperparameter tuning. We measured the models’ performance using precision, recall, F1 score, and accuracy. Results showed that Random Forest consistently outperformed the other investigated models (KNN, SVM, Decision Tree, AdaBoost, and XGBoost) across all scenarios, demonstrating high accuracy and balanced precision and recall. The application of SMOTE improved model performance, and hyperparameter tuning enhanced overall model effectiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.