Abstract
The predictions of properties for wood disc average are seldom reported, and they are important for sorting out logs based on their quality. The minimum near infrared (NIR) spectra required to predict wood disc average properties would also be of critical importance. In this study, calibration and prediction models for wood disc average properties were developed using NIR spectral data for balsam fir (Abies balsamea (L.) Mill.) and black spruce (Picea mariana (Mill.) B.S.P.) samples collected from 14 different sites across Newfoundland, Canada. The calibration was done against area-weighted average wood properties determined by SilviScan. NIR spectra were collected in 18 mm increments from the radial–longitudinal face of green and oven-dried samples. Results showed that using NIR spectra from three spots per wood strip was sufficient for the modeling and prediction for density and module of elasticity (MOE). The coefficients of determination ranged from 0.76 (MOE of green wood samples) to 0.88 (density of oven-dried wood samples). However, the microfibril angle (MFA) cannot be well predicted from either green wood or oven-dried wood NIR spectra. Our results further showed that the NIR spectra collected from oven-dried wood samples gave better calibration and prediction than those collected from green wood samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.