Abstract

Multiphase nanocomposites have drawn substantial attention due to their advanced functionality, including high thermal conductivity. Herein, theoretical models are developed based on modifications of the effective medium theory and then validated to predict the effective thermal conductivity (Keff) of three common multiphase nanocomposites: nanosheet/nanoparticle/polymer, nanotube/nanoparticle/polymer, and nanosheet/nanotube/polymer. Case studies showed that the predicted Keff agreed well with available experimental data, validating the developed models. Moreover, quantifiable material properties, like the thermal conductivity of nanofillers, the morphology of nanofillers, and the interfacial thermal resistance around nanofillers, were used to investigate their effects on the Keff of multiphase nanocomposites. This quantitative study not only can provide simplified strategy to predict the Keff for diverse multiphase nanocomposites, but it can also guide the design of multiphase nanocomposites with enhanced thermal conductivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.