Abstract

Sea-level rise (SLR) has been confirmed to be accelerating globally due to human-influence driven climate change. Multiple studies suggest many coastal communities will soon be inundated by SLR. Prior to inundation, habitable uplands above the high tide line first convert to uninhabitable wetlands, forcing human exodus. Habitability, not the land's presence above the low tide line, drives exodus. We determined the time left for uplands of the Town of Tangier of VA, USA to be converted to wetlands, analyzed local sea level rise data to determine the best local SLR scenario (low, mid, or high) fit, then compared upland conversion rate to the rate of population decline. The upland landmass constituting the Town of Tangier declined from 32.8 to 12.5 ha (1967–2019), accelerating over time, with complete conversion to wetlands predicted by 2051. The US Army Corps of Engineers (USACE) high SLR curve is the best fit to the local tide gauge's raw data (1967–2020), indicating local sea level rise has rapidly accelerated in recent decades, concomitant with the rate of wetland conversion. The Town's population, in decline since the 1930s, accelerated rapidly after 1980 and trended downward in tandem with the conversion of the Town's uplands to wetlands. We also estimated costs to relocate the Town as well as for a conceptual plan to provide long-term stability to the Town and Island of Tangier.

Highlights

  • The Intergovernmental Panel on Climate Change [IPCC Sixth Assessment Report (AR6)] asserted that “It is unequivocal that human influence has warmed the atmosphere, ocean and land

  • The aerial imagery was provided by the US Geological Survey (USGS), Environmental Systems Research Institute (Esri), National Oceanic and Atmospheric Administration (NOAA), US Department of Agriculture Farm Service Agency (USDA), and the Commonwealth of Virginia

  • Our analysis confirms that the Town of Tangier has already been severely impacted by climate-change-induced Sea-level rise (SLR)

Read more

Summary

Introduction

The Intergovernmental Panel on Climate Change [IPCC Sixth Assessment Report (AR6)] asserted that “It is unequivocal that human influence has warmed the atmosphere, ocean and land. Widespread and rapid changes in the atmosphere, ocean, cryosphere and biosphere have occurred” (IPCC, 2021). The IPCC noted that since the beginning of the Industrial Revolution, the global mean sea level rise (SLR) rose significantly and has been accelerating, posing an existential threat to many island (Farbotko, 2010) and coastal communities. The inhabited Tangier Island, in the middle of Chesapeake Bay, USA, is one of those threatened islands and is the focus of this study (Figure 1). The Chesapeake Bay is the largest estuary in the United States, located on the Mid-Atlantic region of the East Coast, separated from the Atlantic Ocean by the Delmarva Peninsula

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.