Abstract
Germanium is becoming an important material for mid-infrared photonics, but the modulation mechanisms in Ge are not yet well understood. In this paper, we estimate the size of free-carrier electroabsorption and electrorefraction effects in germanium across the 2 to 16 µm wavelength range at 300 K. The predictions are based as much as possible upon experimental absorption data from the literature and are supported by extrapolations from experimental data using first-principle quantum theoretical modeling. We find that free-carrier absorption is substantially stronger in Ge than in Si.
Highlights
Summary
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have