Abstract

One of the domains of genetic enhancement that has extensively employed both simulation and authentic data is Biometrics. Selecting efficient models for the Genome-Wide Selection (GWS) process using molecular markers (SNPs) presents several challenges. Among these challenges is the effective identification of the optimal model for fitting a given dataset. To contribute to this endeavor, this paper's primary objective is to assess the predictive accuracy of nine (9) distinct models, each following different paradigms within the realm of Biometrics. The data employed in this study were generated through simulation, encompassing the primary issues encountered in this field of research, including high dimensionality, nonlinearity, and multicollinearity. As the primary findings, notable observations include the enhancement of predictive efficiency as data noise decreases, the predominance of the tree paradigm (for low noise levels, BOO), and the efficacy of the neural network paradigm (for high noise levels, RBF).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.