Abstract

High delicate particulate matter (PM2.5) concentration can seriously reduce air quality, destroy the environment, and even jeopardize human health. Accordingly, accurate prediction for PM2.5 plays a vital role in taking precautions against upcoming air ambient pollution incidents. However, due to the disturbance of seasonal and nonlinear characteristics in the raw series, pronounced forecasts are confronted with tremendous handicaps, even though for seasonal grey prediction models in the preceding researches. A novel seasonal nonlinear grey model is initially designed to address such issues by integrating the seasonal adjustment factor, the conventional Weibull Bernoulli grey model, and the cultural algorithm, simultaneously depicting the seasonality and nonlinearity of the original data. Experimental results from PM2.5 forecasting of four major cities (Shanghai, Nanjing, Hangzhou, and Hefei) in the YRD validate that the proposed model can obtain more accurate predictive results and stronger robustness, in comparison with grey prediction models (SNGBM(1,1) and SGM(1,1)), conventional econometric technology (SARIMA), and machine learning methods (LSSVM and BPNN) by employing accuracy levels. Finally, the future PM2.5 concentration is forecasted from 2020 to 2022 using the proposed model, which provides early warning information for policy-makers to develop PM2.5 alleviation strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.