Abstract

The work hardening behaviour of GCr15 bearing steel during rolling contact fatigue (RCF) is investigated. Ball-on-rod RCF tests and micro-indentation tests are performed to obtain various subsurface hardness profiles in rod specimens. It is found that orthogonal shear stress is responsible for work hardening under Hertzian contact and that the extent of hardness increase is positively associated with the stress level and number of cycles. A dislocation-based work hardening model is established by combining the Kocks–Mecking theory, the bearing steel plasticity equation and the Taylor relation. The proposed model is capable of predicting hardness changes with any given rolling contact stress state and number of cycles. The modelling results are compared against the experimental results, with good agreement obtained. This research also provides a methodology for studying the work hardening of different types of bearing steels undergoing RCF, from experiment to modelling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call