Abstract

Predicting the harvest time of wheat in large areas is important for guiding the scheduling of wheat combine harvesters and reducing losses during harvest. In this study, Zhumadian, Zhengzhou and Anyang, the main winter-wheat-producing areas in Henan province, were selected as the observation points, and the main producing areas were from south to north. Based on Landsat 8 satellite remote sensing images, the changes in NDVI (Normalized Difference Vegetation Index), EVI (Enhanced Vegetation Index), and NDWI (Normalized Difference Water Index) were analyzed at different growth stages of winter wheat in 2020. Multiple regression analysis and Back Propagation (BP) neural network machine learning methods were used to establish prediction models for the harvest time of winter wheat at different growth stages. The results showed that the prediction model based on a BP neural network had high accuracy. The RMSE, MAE and MAPE of the training set and the test set were 0.531 and 0.5947, 0.3001 and 0.3104, 0.0114% and 0.0119%, respectively. The prediction model of winter wheat harvest date based on BP neural network was verified in the main winter wheat producing areas of Henan province in 2020 and 2021. The average errors were 1.67 days and 2.13 days, which were less than 3 days, meeting the needs for winter wheat production and harvest. The grain water content of winter wheat at harvest time calculated by the prediction model reached the grain water standard of the wheat combine harvester. Therefore, the prediction of the winter wheat harvest time can be realized based on multiple remote sensing indicators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call