Abstract
Purpose This paper aims to investigate the profile of the wind speed of a Cameroonian city for the very first time, as there is a growing trend for new wind energy installations in the West region of Cameroon. Two well-known artificial neural networks, namely, multi-layer perceptron (MLP) and nonlinear autoregressive network with exogenous inputs (NARX), were used to model the wind speed profile of the city of Bapouh in the West-region of Cameroon. Design/methodology/approach In this work, the profile of the wind speed of a Cameroonian city was investigated for the very first time since there is a growing trend for new wind energy installations in the West region of Cameroon. Two well-known artificial neural networks namely multi-layer perceptron (MLP) and nonlinear autoregressive network with exogenous inputs (NARX) were used to model the wind speed profile of the city of Bapouh in the West-region of Cameroon. The meteorological data were collected every 10 min, at a height of 50 m from the NASA website over a period of two months from December 1, 2016 to January 31, 2017. The performance of the model was evaluated using some well-known statistical tools, such as root mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE). The input variables of the model were the mean wind speed, wind direction, maximum pressure, maximum temperature, time and relative humidity. The maximum wind speed was used as the output of the network. For optimal prediction, the influence of meteorological variables was investigated. The hyperbolic tangent sigmoid (Tansig) and linear (Purelin) were used as activation functions, and it was shown that the combination of wind direction, maximum pressure, maximum relative humidity and time as input variables is the best combination. Findings Maximum pressure, maximum relative humidity and time as input variables is the best combination. The correlation between MLP and NARX was computed. It was found that the MLP has the highest correlation when compared to NARX. Originality/value Two well-known artificial neural networks namely multi-layer perceptron (MLP) and nonlinear autoregressive network with exogenous inputs (NARX) were used to model the wind speed profile.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.