Abstract
ABSTRACT Matching status (failure or success) between logistics vehicles and cargoes during transport operation influences the decisions of the owners of vehicles and cargoes on scheduling. It is therefore essential to predict the specific matching status probability of vehicle-cargo matching (VCM). This paper defines the VCM probability, formulates the VCM probability problem, and proposes a method to predict this probability based on Bayesian network. The business (vehicle and goods resources) distribution, VCM degree, and business priority are introduced. By mapping business distribution and matching results to network nodes and matching degree as conditional probability, static and dynamic Bayesian networks for single-time sequence and multi-time sequence VCM probability prediction are constructed. A recursive algorithm is also developed to efficiently solve the dynamic Bayesian network model. The results of a prediction example demonstrate that the proposed method and model are valid and efficient. The model shows that VCM probability increases with time, but there is no obvious rule and uncertainty exists, whereas the increase rate gradually decreases with time. Further, adjusting business distribution and priorities can change the VCM probability. The proposed method provides support for the logistics information platform for scheduling decision and controlling strategy and logistics resource selection services.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.