Abstract
Dynamic Bayesian network models extend BNs to represent the temporal evolution of a certain process. There are two basic types of Bayesian network models for dynamic processes: state based and event based. Dynamic Bayesian networks are state-based models that represent the state of each variable at discrete time intervals. Event-based models represent the changes in the state of each state variable; each temporal variable will then correspond to the time in which a state change occurs. In this chapter, we will review dynamic Bayesian networks and event networks, including representation, inference, and learning. The chapter includes two application examples: dynamic Bayesian networks for gesture recognition and temporal nodes Bayesian networks for HIV mutational pathways prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.