Abstract

The research described in this paper is a numerical investigation of the effects of unsteady flow on gas turbine heat transfer, particularly on a rotor blade surface. The unsteady flow in a rotor blade passage and the unsteady heat transfer on the blade surface as a result of wake/blade interaction are modeled by the inviscid flow/boundary layer approach. The Euler equations that govern the inviscid flow are solved using a time-accurate marching scheme. The unsteady flow in the blade passage is induced by periodically moving a wake model across the passage inlet. Unsteady flow solutions in the passage provide pressure gradients and boundary conditions for the boundary-layer equations that govern the viscous flow adjacent to the blade surface. Numerical solutions of the unsteady turbulent boundary layer yield surface heat flux values that can then be compared to experimental data. Comparisons with experimental data show that unsteady heat flux on the blade suction surface is well predicted, but the predictions of unsteady heat flux on the blade pressure surface do not agree.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call