Abstract

Capillary pressure/saturation data are often difficult and time consuming to measure, particularly for non-water-wetting porous media. Few capillary pressure/saturation predictive models, however, have been developed or verified for the range of wettability conditions that may be encountered in the natural subsurface. This work presents a new two-phase capillary pressure/saturation model for application to the prediction of primary drainage and imbibition relations in fractional wettability media. This new model is based upon an extension of Leverett scaling theory. Analysis of a series of DNAPL/water experiments, conducted for a number of water/intermediate and water/organic fractional wettability systems, reveals that previous models fail to predict observed behavior. The new Leverett–Cassie model, however, is demonstrated to provide good representations of these data, as well as those from two earlier fractional wettability studies. The Leverett–Cassie model holds promise for field application, based upon its foundation in fundamental scaling principles, its requirement for relatively few and physically based input parameters, and its applicability to a broad range of wetting conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.