Abstract
Phase change materials (PCMs) have gained popularity in storing thermal energy due to their high energy storage capacity per volume. However, the low performance of the PCM heat exchanger (HX) is primarily due to poor thermal conductivity. The performance of these systems can be improved by using metal foams, nanoparticles, fins, etc. In the present work, the melt fraction (MF) in PCM shell and tube (ST) heat exchanger (HX) with a hybrid combination of metal foam + Graphene nanoplatelets (GNP) nanoparticles (NPs) is predicted using the Machine learning (ML) algorithms. This study analyzes 0.93, 0.95, and 0.97 porosity copper metal foams and 0.5% and 1% volume fraction GNP NPs considering the orientation (0°, 30°, 45°, 60° and 90°) effects of HX. Numerical simulations are carried out to collect the data, to train, cross-validate, and testing. Linear regression (LR), support vector regression (SVR), XGBoost (XGB), and K nearest neighbor (K NN) ML algorithms are used to predict the MF of the PCM in HX with respect to time. MF is predicted during both the melting and solidification processes. Among the ML models selected, the LR model has predicted the transient variation of MF with the highest accuracy during both melting and solidification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.