Abstract
Vocal sound imitations provide a new challenge for understanding the coupling between articulatory mechanisms and the resulting audio. In this study, the classification of three articulatory categories, phonation, supraglottal myoelastic vibrations, and turbulence, have been modeled from audio recordings. Two data sets were assembled, consisting of different vocal imitations by four professional imitators and four non-professional speakers in two different experiments. The audio data were manually annotated by two experienced phoneticians using a detailed articulatory description scheme. A separate set of audio features was developed specifically for each category using both time-domain and spectral methods. For all time-frequency transformations, and for some secondary processing, the recently developed Auditory Receptive Fields Toolbox was used. Three different machine learning methods were applied for predicting the final articulatory categories. The result with the best generalization was found using an ensemble of multilayer perceptrons. The cross-validated classification accuracy was 96.8% for phonation, 90.8% for supraglottal myoelastic vibrations, and 89.0% for turbulence using all the 84 developed features. A final feature reduction to 22 features yielded similar results.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have