Abstract

Abstract Liquid organic peroxides (LOPs) have been widely used as initiators of polymerization, hardening, or cross-linking agents. We evaluated a beneficial kinetic model to acquire accurate thermokinetic parameters to help preventing runaway reactions, fires or explosions in the process environment. Differential scanning calorimetry was used to assess the kinetic parameters, such as kinetic model, reaction order, heat of reaction (ΔHd), activation energy (Ea), frequency factor (lnk0), etc. The non-isothermal and isothermal kinetic models were compared to determine the validity of the kinetic model, and then applied to the thermal hazard assessment of commercial package contaminated with LOPs. Simulations of a 0.5-L Dewar vessel and 25-kg commercial package were performed. We focused on the thermal stability of different liquid system properties for LOPs. From the results, the optimal conditions were determined for avoiding violent heat effects that can cause a runaway reaction in storage, transportation...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.