Abstract
After positioning a 1:20 scaled model of a three-bladed horizontal-axis turbine in the wake of a wall-mounted cylinder, synchronized turbine performance and flow measurements are carried out to investigate the relationship between the incoming flow field and the turbine power fluctuations. The Linear Stochastic Estimation (LSE) is used to predict the turbine output fluctuations from the knowledge of the Large Scale flow Structures (LSS) embedded in the incoming turbulent flow. LSS extraction by Fourier analysis or Proper Orthogonal Decomposition shows that LSS are responsible for the main unsteady variations of the power fluctuations, especially their highest amplitudes. The RMS of turbine output fluctuations are entirely due to the LSS. It is also demonstrated that whatever the nature of the incoming turbulent flow is, the low frequency filtering process coupled with the LSE method allows the recovering of at least 90% of the turbine power RMS. Furthermore, the low-frequency spectral content of the turbine power fluctuations is very well predicted, especially the frequency peaks. A preliminary LSE application is performed in order to predict the instantaneous turbine output fluctuations at more than 85% confidence level, from only three velocity signals measured in front of the turbine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.