Abstract

This paper aims to predict the hand values (HVs) and total hand values (THVs) of functional fabrics by applying the fuzzy logic model (FLM) and artificial neural network (ANN) model. Functional fabrics were evaluated by trained panels employing subjective evaluation scenarios. Firstly, the FLM was applied to predict the HV from finishing parameters; then, the FLM and ANN model were applied to predict the THV from the HV. The estimation of the FLM on the HV was efficient, as demonstrated by the root mean square error (RMSE) and relative mean percentage error (RMPE); low values were recorded, except those bipolar descriptors whose values are within the lowermost extreme values on the fuzzy model. However, the prediction performance of the FLM and ANN model on THV was effective, where RMSE values of ∼0.21 and ∼0.13 were obtained, respectively; both values were within the variations of the experiment. The RMPE values for both models were less than 10%, indicating that both models are robust, effective, and could be utilized in predicting the THVs of the functional fabrics with very good accuracy. These findings can be judiciously utilized for the selection of suitable engineering specifications and finishing parameters of functional fabrics to attain defined tactile comfort properties, as both models were validated using real data obtained by the subjective evaluation of functional fabrics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.