Abstract

In this work, all-d metal Heusler alloys Ni–Mn–Cr were predicted by first principles. Their structure, magnetism, tetragonal distortion and electronic properties were studied. The cubic groud state structures of Ni2MnCr and NiMnCr2 are XA type, and that of NiMn2Cr is L21 type. All of them have magnetism. The change of their lattice constants is closely related to the covalent radius of atoms. Ni2MnCr has a stable tetragonal phase and may undergo martensitic transition. NiMn2Cr has a lower energy tetragonal phase, but is dynamically unstable. The equilibrium volumes of the two compounds expand through tetragonal distortion. NiMnCr2 does not have a lower energy tetragonal phase. In the tetragonal distortion, the atomic magnetic moments are influnced by the interatomic distance and the magnetic moments of neighboring atoms. The origin of the tetragonal distortion and magnetic properties was discussed in terms of the electronic density of states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.