Abstract

The Golden Kaiser-I-Hind (Teinopalpus aureus Mell, 1923) is the only butterfly among Class I national protected animals in China and is known as the national butterfly. In this study, by accurately predicting the suitable habitat in China under current and future climate scenarios, the potential distribution area of T. aureus was defined, providing a theoretical basis for conservation and management. Based on species distribution records, we utilized the Biomod2 platform to combine climate data from the BCC-CSM2-MR climate model, future shared socio-economic pathways, and altitude data. The potential distribution areas of T. aureus in the current (1970–2000s) and future SSP1_2.6 and SSP5_8.5 climate scenarios in China in 2041–2060 (2050s), 2061–2080 (2070s), and 2081–2100 (2090s) were predicted. The AUC and TSS values of the combined model based on five algorithms were greater than those of the single models, and the AUC value of the receiver operating characteristic curve was 0.990, indicating that the model had high reliability and accuracy. The screening of environmental variables showed that the habitat area of T. aureus in China was mainly affected by annual precipitation, precipitation in the driest month, the lowest temperature in the coldest month, temperature seasonality, elevation, and other factors. Under the current circumstances, the habitat area of T. aureus was mainly located in southern China, including Fujian, Guangdong, Guangxi, Hainan, Zhejiang, Yunnan, Guizhou, Hunan, Taiwan, and other provinces. The suitable area is approximately 138.95 × 104 km2; among them, the highly suitable area of 34.43 × 104 km2 is a priority area in urgent need of protection. Under both SSP1_2.6 and SSP5_8.5, the population centroid tended to shift southward in the 2050s and 2070s, and began to migrate northeast in the 2090s. Temperature, rainfall, and altitude influenced the distribution of T. aureus. In the two climate scenarios, the habitat area of T. aureus declined to different degrees, and the reduction was most obvious in the SSP5_8.5 scenario; climate was the most likely environmental variable to cause a change in the geographical distribution. Climate change will significantly affect the evolution and potential distribution of T. aureus in China and will increase the risk of extinction. Accordingly, it is necessary to strengthen protection and to implement active and effective measures to reduce the negative impact of climate change on T. aureus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call