Abstract

It is necessary to accurately predict the minimum point of pressure drop to ensure the safety of nuclear reactors. However, the non-uniform heat flux distribution along the transverse direction is encountered when the plate-type nuclear fuels are used. This study shows the effect of a transversely non-uniform heat flux on the minimum point of the pressure drop. The pressure drop-flow rate curve under the non-uniform heat flux was obtained by the experiment, and the trend of curve was different with the one of uniform heat flux case. Under the non-uniform heat flux, even when the inlet mass flow rate decreased, the value of the pressure drop was constant for a while with the development of a two-phase flow. With further reduction of inlet mass flow rate, the pressure drop started to decrease until the minimum point of the pressure drop was reached. Moreover, the inlet mass flow rate at the minimum point of pressure drop is much lower than that in the uniform heat flux case. For a detail analysis, the numerical approach is proposed along with the application of multi-channel concept. A single narrow rectangular channel is divided along the transverse direction, and the heat flux is given non-uniformly to the divided channels. Although the pressure drop is separately calculated for each divided channel, the mass is transferred between the channels. In the calculation, the mass flow rate is non-uniformly distributed in the transverse direction. If the mass flow rate is uniformly distributed, the non-uniform heat flux causes an unbalanced pressure drop because of the non-uniform distribution of void fraction. As a result, at the edges where the void fraction is high, the mass flow rate is transferred to the middle of channel to balance the pressure drop in transverse direction. When the void fraction in the middle becomes significantly large, the minimum point of the pressure drop can be obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call