Abstract

The use of hybrid methods, involving both quantum mechanics and molecular mechanics, to model the mechanism of enzyme-catalysed reactions, is discussed. Two alternative approaches to treating the electrostatic interactions between the quantum mechanical and molecular mechanical regions are studied, involving either the inclusion of this term in the electronic Hamiltonian (QM/MM), or evaluating it purely classically (MO + MM). In the latter scheme, possible problems of using force fields that are standard for macromolecular modelling are identified. The use of QM/MM schemes to investigate the mechanism of the enzymes thymidine phosphorylase (ThdPase) and protein tyrosine phosphatase (PTP) is described. For both systems, transition states have been identified using a PM3 Hamiltonian. For ThdPase, concerted motion of the enzyme during the course of the reaction is suggested and, for PTP, a two-step dephosphorylation reaction is indicated, both with quite low barriers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.