Abstract

DNA is the most important biological molecule and its hydration contributes essentially to the structure and functions of the double helix. We analyze the monohydration of the individual bases of nucleic acids and their methyl derivatives using methods of Molecular Mechanics (MM) with the Poltev-Malenkov (PM), AMBER and OPLS force fields, as well as ab initio Quantum Mechanics (QM) calculations at MP2/6-31G(d,p) level of theory. A comparison is made between the calculated interaction energies and the experimental enthalpies of microhydration of bases, obtained from mass spectrometry at low temperatures. Each local water-base interaction energy minimum obtained with MM corresponds to the minimum obtained with QM. General qualitative agreement was observed in the geometrical characteristics of the local minima obtained via the two groups of methods. MM minima correspond to slightly more coplanar structures than those obtained via QM methods, and the absolute MM energy values overestimate corresponding values obtained with QM. For Adenine and Thymine the QM local minima energy values are closer to those obtained by the PM potential (average of 0.72 kcal/mol) than by the AMBER force field (1.86 kcal/mol). The differences in energy between MM and QM results are more pronounced for Guanine and Cytosine, especially for minima with the water molecule forming H-bonds with two proton-acceptor centers of the base. Such minima are the deepest ones obtained via MM methods while QM calculations result in the global minima corresponding to water molecule H-bonded to one acceptor and one donor site of the base. Calculations for trimethylated bases with a water molecule corroborate the MM results. The energy profiles were obtained with some degrees of freedom of the water molecule being frozen. This data will contribute to the improvement of the molecular mechanics force fields.

Highlights

  • Water is one of the most abundant chemical compounds on the planet, and it constitutes a high percentage of the cell composition

  • Quantum Mechanics (QM) calculations of Hartree Fock (HF), Density Functional Theory (DFT), and Second-order Møller Plesset Perturbation Theory (MP2) performed for hydrated complexes of Deoxyribonucleic Acid (DNA) bases revealed that the geometric properties of such complexes are extremely sensitive to the interactions with one or few water molecules [2]-[4]; the presence of just one water molecule is enough to completely change the structure of a complex of nucleic acid bases in the global minimum

  • The results of our ab initio calculations revealed both non-coplanar and coplanar conformations, for example the structures corresponding to minimum 2 for Adenine and 3 for Cytosine are completely planar whereas for structures 2 and 3 for Thymine and 3 for Guanine, one of the hydrogens of the water molecule remains in the plane of the base while the other hydrogen deviates from the plane for approximately 30 ̊

Read more

Summary

Introduction

Water is one of the most abundant chemical compounds on the planet, and it constitutes a high percentage of the cell composition. The microhydration of Nucleic Acid (NA) bases, i.e. interactions of the bases with separate water molecules, plays an important role in structural stabilization of the double helix. Quantum Mechanics (QM) calculations of Hartree Fock (HF), Density Functional Theory (DFT), and Second-order Møller Plesset Perturbation Theory (MP2) performed for hydrated complexes of DNA bases revealed that the geometric properties of such complexes are extremely sensitive to the interactions with one or few water molecules [2]-[4]; the presence of just one water molecule is enough to completely change the structure of a complex of nucleic acid bases in the global minimum. A modular scheme for the hydration was suggested It determines the average sites of water molecules around the components of the NA, and can generate predictive patterns for the distribution of water molecules around the NA fragments. Quantitative evaluation of the sites of hydration contributes to the improvement of Molecular Mechanics (MM) force fields [7] [8]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call