Abstract
This paper presents an approach for modeling and prediction of both surface roughness and cutting zone tem- perature in turning of AISI304 austenitic stainless steel using multi-layer coated (TiCN+TiC+TiCN+TiN) tungsten carbide tools. The proposed approach is based on an adap- tive neuro-fuzzy inference system (ANFIS) with particle swarm optimization (PSO) learning. AISI304 stainless steel bars are machined at different cutting speeds and feedrates without cutting fluid while depth of cut is kept constant. ANFIS for prediction of surface roughness and cutting zone temperature has been trained using cutting speed, feedrate, and cutting force data obtained during experiments. ANFIS architecture consisting of 12 fuzzy rules has three inputs and two outputs. Gaussian membership function is used during the training process of the ANFIS. The surface rough- ness and cutting zone temperature values predicted by the PSO-based ANFIS model are compared with the measured values derived from testing data set. Testing results indicate that the predicted surface roughness and cutting zone temperature are in good agreement with measured roughness and temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.