Abstract

Static dielectric constant (ε0) and refractive index (n) have been experimentally determined for binary liquid mixture of n-Hexanol (HxOH) with Acetophenone (ACP) over the entire concentration range of mixture composition (0.0 →1.0) at constant temperature 303.15 K. Static dielectric constant (ε0) and refractive index (n) for the binary mixture have been measured using high precision LCR meter (0.2 MHz) and Abbe’s refractometer respectively. Excess of static dielectric constant (ε0)E and refractive index (n)E are determined and fitted with Redlich-Kister polynomial equation to derive the binary coefficients and standard deviations. Deviations of these parameters are discussed in terms of terms of molecular interaction between the constituent species. In the present work, comparative study of various mixing models for static dielectric constant (ε0) [Böttcher-Bordewijk (BOTT), Bruggeman (BRUG), Kraszewski (KRAZ), Looyenga (LOOY), Peon–Iglesias (P-I)] and for refractive index (n) [Oster (OST), Weiner (W), Eykman (EYK), Lorentz–Lorentz (L-L), Arago–Biot (A-G), Newton (Nw), Gladstone–Dale (G-D) and Erying–John (EJ)] have been carried out and their validity has been tested for the (n-HxOH+ACP) binary mixtures. The objective of the present work is to report the influence of nonassociative molecule on the molecular dynamics of associative molecules and validation mixing models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call