Abstract

Soil salinization is a widespread phenomenon leading to land degradation, particularly in regions with brackish inland aquaculture ponds. However, because of the high geographical and temporal fluctuation, monitoring vast areas provides substantial challenges. This study uses remote sensing data and machine learning techniques to predict soil salinity. Four linear models, namely linear regression, least absolute shrinkage and selection operator (LASSO), ridge, and elastic net regression, and three boosting algorithms, namely XGB regressor, LightGBM, and CatBoost regressor, were used to predict soil salinity. Cross-validation was performed by splitting the data into 30% for model testing and 70% for model training. Multiple metrics such as determination coefficient (R2), root mean square error (RMSE), mean square error (MSE), and mean absolute error (MAE) were used to compare the performances of these algorithms. By comparison, the CatBoost regressor model performed better than the other models in both testing (MAE = 0.42, MSE = 0.28, RMSE = 0.53, R2 = 0.92) and training (MAE = 0.49, MSE = 0.36, RMSE = 0.60, R2 = 0.90) phases. Hence, the CatBoost regressor model was recommended for monitoring soil salinity in India's massive inland aquaculture zone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.