Abstract

Abstract This paper aims to examine the connection between the material quality with regard to the size and spatial distribution of the defects and the size or position of the defects causing the fracture which determine the durability of components in the range of Very High Cycle Fatigue (VHCF). For this purpose, the quality of the metastable austenitic steel 1.4301 was characterized via metallographic examinations. Longitudinal and cross sections were taken from a sheet steel. Afterwards size and position of all defects were measured. The metallographic information acquired was used to create a statistical defect distribution model. On the basis of this model and the stress distribution in the most stressed area of the used fatigue samples, the distribution of size and position of the inclusions relevant for the fatigue failure could be predicted. The results of the modelling are in good agreement with the experimental observations regarding the positions of crack initiation on samples failing under VHCF circumstances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.