Abstract

Selective laser melting (SLM) is a novel technique in laser additive manufacturing which uses laser energy to melt powder material according to the geometry of the computer aided design (CAD) model provided to the SLM system. The process uses a layer-wise manufacturing process which ensures that the manufactured parts possess good mechanical properties. The process is specifically suitable for complex geometries and customized parts which otherwise would be costly and, even, impossible to be manufactured using conventional manufacturing processes. However, for the application of the SLM process for aerospace applications, their performance needs to be investigated in very high cycle fatigue (VHCF) region. This study aims at determining the VHCF behavior of the AlSi12 alloy manufactured by the SLM process. Fatigue characterization has been carried out at frequencies of 20 Hz for high cycle fatigue (HCF) range and 20 kHz for the VHCF range until 1E9 cycles. Optical and scanning electron microscopes were used for microstructural and fracture analysis. The results show that the SLM parts outperform that of cast materials. However microstructural features as well as process-induced defects need to be controlled for a reliable fatigue performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.