Abstract

A method based on the particle swarm optimization algorithm is presented to design quasi-two-dimensional materials. With this development, various single-layer and bilayer materials of C, Si, Ge, Sn, and Pb were predicted. A new Si bilayer structure is found to have a more favored energy than the previously widely accepted configuration. Both single-layer and bilayer Si materials have small band gaps, limiting their usages in optoelectronic applications. Hydrogenation has therefore been used to tune the electronic and optical properties of Si layers. We discover two hydrogenated materials of layered Si8H2 and Si6H2 possessing quasidirect band gaps of 0.75 and 1.59 eV, respectively. Their potential applications for light-emitting diode and photovoltaics are proposed and discussed. Our study opened up the possibility of hydrogenated Si layered materials as next-generation optoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.