Abstract

BackgroundAcute heart failure (AHF) is associated with significant morbidity and mortality. Effective patient risk stratification is essential to guiding hospitalization decisions and the clinical management of AHF. Clinical decision support systems can be used to improve predictions of mortality made in emergency care settings for the purpose of AHF risk stratification. In this study, several models for the prediction of seven-day mortality among AHF patients were developed by applying machine learning techniques to retrospective patient data from 236,275 total emergency department (ED) encounters, 1881 of which were considered positive for AHF and were used for model training and testing. The models used varying subsets of age, sex, vital signs, and laboratory values. Model performance was compared to the Emergency Heart Failure Mortality Risk Grade (EHMRG) model, a commonly used system for prediction of seven-day mortality in the ED with similar (or, in some cases, more extensive) inputs. Model performance was assessed in terms of area under the receiver operating characteristic curve (AUROC), sensitivity, and specificity.ResultsWhen trained and tested on a large academic dataset, the best-performing model and EHMRG demonstrated test set AUROCs of 0.84 and 0.78, respectively, for prediction of seven-day mortality. Given only measurements of respiratory rate, temperature, mean arterial pressure, and FiO2, one model produced a test set AUROC of 0.83. Neither a logistic regression comparator nor a simple decision tree outperformed EHMRG.ConclusionsA model using only the measurements of four clinical variables outperforms EHMRG in the prediction of seven-day mortality in AHF. With these inputs, the model could not be replaced by logistic regression or reduced to a simple decision tree without significant performance loss. In ED settings, this minimal-input risk stratification tool may assist clinicians in making critical decisions about patient disposition by providing early and accurate insights into individual patient’s risk profiles.

Highlights

  • Acute heart failure (AHF) refers to new or worsening signs and symptoms of heart failure leading to unscheduled medical care or hospitalization [1]

  • Accurate risk stratification of AHF patients is important for optimizing outcomes, as it may be used to guide hospitalization decisions and clinical management [10]

  • Risk scoring systems may be used to improve predictions made in the emergency department (ED) context about mortality in AHF patients beyond clinical judgment alone [10, 12]

Read more

Summary

Introduction

Acute heart failure (AHF) refers to new or worsening signs and symptoms of heart failure leading to unscheduled medical care or hospitalization [1]. Initial evaluation and triage of AHF patients is often performed in the emergency department (ED) Based on this initial clinical assessment, patients may be discharged for outpatient management or admitted for more intensive care. Accurate risk stratification of AHF patients is important for optimizing outcomes, as it may be used to guide hospitalization decisions and clinical management [10]. Risk scoring systems may be used to improve predictions made in the ED context about mortality in AHF patients beyond clinical judgment alone [10, 12]. Effective patient risk stratification is essential to guiding hospitalization decisions and the clinical management of AHF. Clinical decision support systems can be used to improve predictions of mortality made in emergency care settings for the purpose of AHF risk stratification. Model performance was assessed in terms of area under the receiver operating characteristic curve (AUROC), sensitivity, and specificity

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.