Abstract

The use of prior knowledge in the machine learning framework has been considered a potential tool to handle the curse of dimensionality in genetic and genomics data. Although random forest (RF) represents a flexible non-parametric approach with several advantages, it can provide poor accuracy in high-dimensional settings, mainly in scenarios with small sample sizes. We propose a knowledge-slanted RF that integrates biological networks as prior knowledge into the model to improve its performance and explainability, exemplifying its use for selecting and identifying relevant genes. knowledge-slanted RF is a combination of two stages. First, prior knowledge represented by graphs is translated by running a random walk with restart algorithm to determine the relevance of each gene based on its connection and localization on a protein-protein interaction network. Then, each relevance is used to modify the selection probability to draw a gene as a candidate split-feature in the conventional RF. Experiments in simulated datasets with very small sample sizes (n≤30)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(n \\le 30)$$\\end{document} comparing knowledge-slanted RF against conventional RF and logistic lasso regression, suggest an improved precision in outcome prediction compared to the other methods. The knowledge-slanted RF was completed with the introduction of a modified version of the Boruta feature selection algorithm. Finally, knowledge-slanted RF identified more relevant biological genes, offering a higher level of explainability for users than conventional RF. These findings were corroborated in one real case to identify relevant genes to calcific aortic valve stenosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.