Abstract
The Sea Surface Temperature (SST) is one of the environmental indicators monitored by buoys of the Prediction and Research Moored Array in the Tropical Atlantic (PIRATA) Project. In this work, a year-ahead prediction procedure based on SST knowledge of previous periods is proposed and coupled with Support Vector Machines (SVMs). The proposed procedure is focused on seasonal and intraseasonal aspects of SST. Data from PIRATA buoys are used in various ways to feed the SVM models: with raw data, using information about the SST slopes and by means of SST curvatures. The influence of these data handling strategies over the predictive capacity of the proposed methodology is discussed. Additionally, the forecasts’ accuracy is evaluated as the number of years considered in the SVM training phase increases. The raw data and the curvatures presented quite similar performances, they are more efficient than the slopes; the respective Mean Absolute Percentage Error (MAPE) values do not exceed 2% and all Mean Absolute Errors (MAEs) are lower than 0.37 °C. Besides, as the number of years considered in the training set increases, the MAPE and MAE values tend to stabilize.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.