Abstract
A Trombe wall-heating system is used to absorb solar energy to heat buildings. Different parameters affect the system performance for optimal heating. This study evaluated the performance of four machine learning algorithms—linear regression, k-nearest neighbors, random forest, and decision tree—for predicting the room temperature in a Trombe wall system. The accuracy of the algorithms was assessed using R² and RMSE values. The results demonstrated that the k-nearest neighbors and random forest algorithms exhibited superior performance, with R² and RMSE values of 1 and 0. In contrast, linear regression and decision tree showed weaker performance. These findings highlight the potential of advanced machine learning algorithms for accurate room temperature prediction in Trombe wall systems, enabling informed design decisions to enhance energy efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.