Abstract
AimsNearly one third of patients receiving cardiac resynchronization therapy (CRT) suffer non-response. We intend to develop predictive models using machine learning (ML) approaches and easily attainable features before CRT implantation. Methods and resultsThe baseline characteristics of 752 CRT recipients from two hospitals were retrospectively collected. Nine ML predictive models were established, including logistic regression (LR), elastic network (EN), lasso regression (Lasso), ridge regression (Ridge), neural network (NN), support vector machine (SVM), random forest (RF), XGBoost and k-nearest neighbour (k−NN). Sensitivity, specificity, precision, accuracy, F1, log-loss, area under the receiver operating characteristic (AU-ROC), and average precision (AP) of each model were evaluated. AU-ROC was compared between models and the latest guidelines. Six models had an AU-ROC value above 0.75. The LR, EN and Ridge models showed the highest overall predictive power compared with other models with AU-ROC at 0.77. The XGBoost model reached the highest sensitivity at 0.72, while the highest specificity was achieved by Ridge model at 0.92. All ML models achieved higher AU-ROCs that those derived from the latest guidelines (all P < 0.05). The effect size analysis identified left bundle branch block, left ventricular end-systolic diameter, and history of percutaneous coronary intervention as the most crucial predictors of CRT response. An online tool to facilitate the prediction of CRT response is freely available at http://www.crt-response.com/. ConclusionsML algorithms produced efficient predictive models for evaluation of CRT response with features before implantation. Tools developed accordingly could improve the selection of CRT candidates and reduce the incidence of non-response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.