Abstract

Falls are one of the most frequently occurring adverse events among hospitalized patients. The Morse Fall Scale, which has been widely used for fall risk assessment, has the two limitations of low specificity and difficulty in practical implementation. The aim of this study was to develop and validate an interpretable machine learning model for prediction of falls to be integrated in an electronic medical record (EMR) system. This was a retrospective study involving a tertiary teaching hospital in Seoul, Korea. Based on the literature, 83 known predictors were grouped into seven categories. Interpretable fall event prediction models were developed using multiple machine learning models including gradient boosting and Shapley values. Overall, 191,778 cases with 272 fall events (0.1%) were included in the analysis. With the validation cohort of 2020, the area under the receiver operating curve (AUROC) of the gradient boosting model was 0.817 (95% confidence interval [CI], 0.720-0.904), better performance than random forest (AUROC, 0.801; 95% CI, 0.708-0.890), logistic regression (AUROC, 0.802; 95% CI, 0.721-0.878), artificial neural net (AUROC, 0.736; 95% CI, 0.650-0.821), and conventional Morse fall score (AUROC, 0.652; 95% CI, 0.570-0.715). The model's interpretability was enhanced at both the population and patient levels. The algorithm was later integrated into the current EMR system. We developed an interpretable machine learning prediction model for inpatient fall events using EMR integration formats.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.