Abstract
The growing popularity of battery-powered products, such as electric vehicles and wearable devices, has increasingly motivated the need to predict the remaining life of lithium-based batteries. This study proposes a method for predicting the remaining life of lithium-based batteries based on a hybrid neural network. First, variational modal decomposition (VMD) was used for noise reduction to maximize retention of the original information and prevent capacity degradation. Second, the trend of capacity decline after noise reduction was modeled and predicted using the combination of bidirectional long short-term memory (BiLSTM) and Monte Carlo (MC) dropout. Finally, experiments were conducted to show that the new method based on the VMD-MC-BiLSTM network achieves good performance for predicting the remaining life of a lithium battery with sufficient confidence level, thereby providing a new approach for optimizing the management of lithium batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.