Abstract
A procedure is developed to predict electromagnetic interference from electronic products using near-field scan data. Measured near-field data are used to define equivalent electric and magnetic current sources characterizing the electromagnetic emissions from an electronic circuit. Reconciliation of the equivalent sources is performed to allow the sources to be accurately applied within full-wave numerical modeling tools like finite-difference time domain (FDTD). Results show that the radiated fields must typically be represented by both electric and magnetic current sources if scattering and multiple-reflections from nearby objects are to be taken into account. The accuracy of the approach is demonstrated by predicting the fields generated by a microstrip trace within and outside of a slotted enclosure, and by predicting the fields generated by the microstrip trace close to a long wire. Values predicted from near-field scan data match those from full-wave simulations or measurements within 6 dB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Electromagnetic Compatibility
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.