Abstract
Adaboost algorithm with improved K-nearest neighbor classifiers is proposed to predict protein subcellular locations. Improved K-nearest neighbor classifier uses three sequence feature vectors including amino acid composition, dipeptide and pseudo amino acid composition of protein sequence. K-nearest neighbor uses Blast in classification stage. The overall success rates by the jackknife test on two data sets of CH317 and Gram1253 are 92.4% and 93.1%. Adaboost algorithm with the novel K-nearest neighbor improved by Blast is an effective method for predicting subcellular locations of proteins.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have