Abstract
The scientific community is very interested in protein aggregation because of its involvement in several neurodegenerative diseases and its significance in industry. Remarkably, fibrillar aggregates are utilized naturally for constructing structural scaffolds or creating biological switches and may be intentionally designed to construct versatile nanomaterials. Consequently, there is a significant need to rationalize and predict protein aggregation. Researchers have developed various computational methodologies and algorithms to predict protein aggregation and understand its underlying mechanics. This chapter aims to summarize the significant advancements in computational methods, accessible resources, and prospective developments in the field of in silico research. We assess the existing computational tools for predicting protein aggregation propensities, detecting areas that are prone to sequential and structural aggregation, analyzing the effects of mutations on protein aggregation, or identifying prion-like domains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Progress in molecular biology and translational science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.